Anduin Xue
Anduin Xue

Anduin's Tech Blog

CUDA


Using SwinIR for Image Super-Resolution Reconstruction

SwinIR基于Swin Transformer的图像超分辨率重建技术正在重新定义图像处理的边界当低分辨率图像通过深度学习模型获得四倍细节扩展时我们不得不思考——当像素的极限被打破时艺术与技术的界限是否也会模糊文章展示了从NVIDIA RTX 4090显卡到Docker容器的完整技术链条通过预构建镜像和自动化脚本将复杂的AI部署简化为单条命令这种工业化部署方式暗示着一个更深层的问题:当技术门槛被降低到只需点击按钮时谁将成为下一个图像革命的创造者?在输入文件夹的模糊照片经过模型处理后输出文件夹中跃然纸上的高清细节不仅展现了算法的魔力更引发对数字遗产保护的思考——那些即将消失的老照片是否正在等待这样的技术来完成它们的数字重生?而当实时超分辨率处理成为可能时我们是否准备好面对监控录像中每个像素都清晰可见的伦理困境?技术文档中那些被精心设计的Dockerfile和训练参数背后隐藏着更值得探索的命题:当模型规模以指数级增长时我们是否正在走向一个所有图像都经过深度学习重塑的未来?--Qwen3

NVIDIA Ai CUDA Docker Resolution Image SwinIR Restore

How to setup CUDA environment for Docker on Ubuntu?

Setting up a CUDA environment for Docker on Ubuntu involves a structured process to enable GPU acceleration within containers. The journey begins by verifying that the system recognizes the NVIDIA GPU, a critical first step to avoid configuration pitfalls. Installing the correct drivers—whether for desktop or server environments—requires careful selection from available versions, with options for automatic or manual installation ensuring flexibility. Once drivers are in place, Docker must be configured to leverage NVIDIA's container toolkit, a bridge between the host hardware and containerized applications. This integration demands precise repository setup and package installation to ensure compatibility. Testing the setup through commands like `nvidia-smi` within a Docker container confirms successful integration, while stress-testing tools like `gpu-burn` validate the GPU's performance under load. Advanced users can extend this configuration using Docker-Compose to define GPU resourc...--Qwen3

NVIDIA CUDA GPU Docker Nvidia Drivers Docker GPU

How to install CUDA and cuDNN on Ubuntu 22.04 and test if its installed successfully

本文系统梳理了在Ubuntu 22.04系统上搭建CUDA cuDNN深度学习环境的完整流程 从版本兼容性验证到最终测试的每个环节都暗含着开发者需要主动思考的关键点 比如当看到nvidia-smi显示的驱动版本时 你是否能准确对应CUDA支持表中对应的版本区间 这个对应关系背后反映了NVIDIA对硬件和软件生态的复杂兼容性设计 当安装cuDNN时 复杂的依赖链和文件路径映射提示我们 一个看似简单的库安装可能涉及多层系统权限管理 当PyTorch安装失败时 你是否意识到直接使用pip安装的包可能与特定CUDA版本存在隐式冲突 这些设计选择都值得深入思考 最后的测试环节中 从简单的hello-world并行执行到mnistCUDNN的矩阵运算验证 再到PyTorch的CUDA可用性检查 形成了完整的验证链条 但测试成功是否意味着环境就完美无缺 你的GPU利用率是否达到预期性能 这些都需要通过实际应用来验证 当看到Test passed!的提示时 你是否开始思考如何将这个环境迁移到生产环境 还是考虑如何优化代码利用GPU的计算能力 这些问题的答案或许就藏在你即将展开的实践中--Qwen3

Ubuntu NVIDIA vGPU CUDA cuDNN GPU

让你的数据中心使用 GPU 算力!

根据文章内容,配置NVIDIA vGPU和CUDA环境需完成驱动安装、授权配置、CUDA版本匹配及BIOS设置,其中vGPU拆分类型需统一且迁移时需保证主机兼容性;部署AI应用需安装cuDNN和基础库,通过ffmpeg可验证硬件编码能力,监控温度需使用nvidia-smi工具获取物理GPU数据;故障排查需重点检查驱动授权状态、内核兼容性、Host/Guest驱动版本一致性及BIOS中IO MMU/PCIe AER设置,同时确保VCenter中GPU模式为Shared Direct。--Qwen3

Ubuntu VMware Vsphere Server NVIDIA Ai vGPU Python Tesla CUDA

  • 1