Anduin Xue
Anduin Xue

Anduin's Tech Blog

Performance


Build a common cache service for your C# app.

这篇文章介绍了如何通过封装Microsoft.Extensions.Caching.Memory库创建一个更简洁的缓存抽象层,重点展示了CacheService类通过策略模式实现的条件缓存机制与选择器模式的结合应用。作者通过封装后的RunCache方法简化了复杂对象的缓存操作,允许开发者通过设置缓存过期时间动态控制数据新鲜度,并通过Selector模式实现缓存数据的转换处理。单元测试示例验证了该方案在不同场景下的行为特征:包括基于缓存条件的动态存储策略、对null值的特殊处理、通过选择器转换数据后的缓存逻辑,以及如何通过设置0分钟缓存时间实现强制刷新。这种设计既保持了原始缓存库的灵活性,又通过策略模式将缓存规则与业务逻辑解耦,为复杂缓存场景提供了可扩展的解决方案。测试用例的覆盖范围暗示着该模式在处理多条件组合缓存场景时的鲁棒性,同时引发思考:是否还有其他维度可以扩展这种缓存策略模式?--Qwen3

ASP.NET Core C# .NET Core Performance Caching .NET Cache MemoryCache

Tips to get better performance for Entity Framework Core

本文探讨了优化Entity Framework Core性能的九大核心策略并揭示了常见误区。通过限制数据量的Take与Skip方法可避免加载冗余行而Select投影技术则能精准提取必要字段而非整表数据。当处理主键查询时使用FirstOrDefaultAsync替代SingleOrDefaultAsync可减少不必要的TOP 2查询开销而AsNoTracking与禁用Include则能有效降低上下文追踪和多表联查的复杂度。特别需要注意IQueryable与IEnumerable的语义差异前者允许链式构建查询而后者会立即执行导致数据过早加载。通过ToListAsync及时终止查询执行或将复杂计算移至服务器端能显著提升效率。当使用Select创建匿名对象时即使不包含导航属性也能自动处理关联数据而不会出现空值。最后文章抛出值得思考的问题:你是否在查询中隐藏着未察觉的性能陷阱?当面对百万级数据时这些优化策略会产生怎样的级联效应?如何在复杂业务场景中平衡查询语义与执行效率?这些问题的答案或许就藏在你下一次的代码审查中。--Qwen3

Entity Framework SQL Performance Database Entity Framework Core Query Optimization

  • 1